Maxwell's law of reciprocity - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Maxwell's law of reciprocity - перевод на русский

MATHEMATICAL LAW, A GENERALIZATION OF QUADRATIC RECIPROCITY
Reciprocity law (mathematics); Reciprocity laws; Law of reciprocity; List of reciprocity laws

Maxwell's law of reciprocity      

строительное дело

закон взаимности Максвелла

Maxwell's law of reciprocity      
закон взаимности Максвелла
quadratic reciprocity law         
THEOREM
Law of quadratic reciprocity; Quadratic reciprocity rule; Aureum Theorema; Law of Quadratic Reciprocity; Quadratic reciprocity law; Quadratic reciprocity theorem; Quadratic Reciprocity; Qr theorem
[матем.] закон взаимности квадратичных вычетов

Определение

ОБЩЕЕ ПРАВО
(англ. Common Law), в Великобритании сложившаяся в 13-14 вв. на основе местных обычаев и обобщения практики королевских судов система права, основанная на прецеденте. Сохраняет свое значение, несмотря на многочисленные реформы судебной системы и права. Cм. также Право справедливости.

Википедия

Reciprocity law

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials f ( x ) {\displaystyle f(x)} with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial f ( x ) = x 2 + a x + b {\displaystyle f(x)=x^{2}+ax+b} splits into linear terms when reduced mod p {\displaystyle p} . That is, it determines for which prime numbers the relation

f ( x ) f p ( x ) = ( x n p ) ( x m p )   ( mod  p ) {\displaystyle f(x)\equiv f_{p}(x)=(x-n_{p})(x-m_{p}){\text{ }}({\text{mod }}p)}

holds. For a general reciprocity lawpg 3, it is defined as the rule determining which primes p {\displaystyle p} the polynomial f p {\displaystyle f_{p}} splits into linear factors, denoted Spl { f ( x ) } {\displaystyle {\text{Spl}}\{f(x)\}} .

There are several different ways to express reciprocity laws. The early reciprocity laws found in the 19th century were usually expressed in terms of a power residue symbol (p/q) generalizing the quadratic reciprocity symbol, that describes when a prime number is an nth power residue modulo another prime, and gave a relation between (p/q) and (q/p). Hilbert reformulated the reciprocity laws as saying that a product over p of Hilbert norm residue symbols (a,b/p), taking values in roots of unity, is equal to 1. Artin reformulated the reciprocity laws as a statement that the Artin symbol from ideals (or ideles) to elements of a Galois group is trivial on a certain subgroup. Several more recent generalizations express reciprocity laws using cohomology of groups or representations of adelic groups or algebraic K-groups, and their relationship with the original quadratic reciprocity law can be hard to see.

Как переводится Maxwell's law of reciprocity на Русский язык